

## Al in Telecommunications Customer Service and Operations Management



Prof Andy Valdar University College London UK

FITCE Congress, Athens, 2023



### Agenda

- 1. Background to today's AI technology
- 2. Current areas of AI use & development by Telcos
- 3. Challenges facing the Telcos in deploying AI
- 4. Conclusions







# 1. Background to today's Al



## **Development of Al**

**1956:** Dartmouth College (USA) conference established the founding principles for AI with vision statement: *"Every aspect of learning or any other feature of intelligence can be so precisely described that a machine can be made to simulate it"* 

**1970s & 1980s**: specific applications – natural language parsers, expert systems. Using heuristic or rule-based algorithms.

**1990s:** Al technology matured. Large scale Al applications enabled by fuzzy logic.

→ control systems in lifts, washing machines, autofocus cameras, etc.

first telecoms applications using constraint logic-programming for resource management (workforce deployment, network optimized planning & design), fault management, & semiauto fault diagnosis.

Early 2000s: Algorithmic & statistical techniques evolved – capable of detecting patterns in large data sets. Cyber security, strategic planning, product or movie recommendations, vehicle routeings & satnav, customer-churn modelling.



#### **Recent Developments of AI**

Until recently, AI systems have been 'closed' or 'narrow' restricted to specific tasks offering intelligence equal to humans but operating at a faster rate. Known as '**Weak AI**'.

Neural networks (based on nodes & connections reflecting human brain mechanism) have become powerful analytical systems. When combined with the massive fast computing power of GPUs (graphical processing units) leads to 'Generative AI' or 'Strong AI'

**Generative AI** has broad cognitive and self-learning capabilities, capable of a broad range of applications.

**Deep Learning** = use of big data sets + neural networks + GPUs

**Rapid developments in speech analytics:** e.g., Google speech recognition software using neural networks trained on labelled speech datasets achieved 23% error rate in 2013; 8% in 2015; and 4.9% in 2017.



Alexa, Eco, Siri, smart search engines,

Similarly in image & video recognition systems



Smart-phone apps; passport control barriers, surveillance systems

Customer & user profiling enables predictive modelling, leading to personalization of content, adverts., etc.



#### **Recent Developments of AI-2**

The recent public awareness of Generative AI is the use of a chatbot called ChatGPT.

- ChatGPT can give convincing generation of written text loved by students for writing their essays and thesis!
- Chat GPT is powered by a type of neural network called a 'Transformer', invented by Google in 2017.

Al chips are now being used in smart mobile phones

- User identification
- Photo enhancements



2. Current areas of use and development of AI by Telcos



## **Artificial Intelligence (AI) in Field Operations**

• Telcom network operators ('Telcos') have been developing AI-based tools and applications for managing their

customer service and network planning and operations over the last 10 years or so. The aim is to:

- Improve network and customer service performance;
- Improve customer service;

- reduce annual operating costs.

- Al now increasingly used to automate and optimise telecoms. field operations.
- Applied in both Front and Back Office applications
- Typical applications:

'Concept-to-Market' – introducing new products and services;

'Lead-to-Cash' – fulfilment of customer orders

'Trouble-to-Resolve – ensuring that service specs and SLAs are met

| Strategic         | Tactical          | Operational | - \ |
|-------------------|-------------------|-------------|-----|
| Set the long-term | Tackle a specific | Day-to-day  |     |
| overall direction | task              | management  |     |



### **Telcos' AI Use-Cases**

#### 1. Network operations:

- Detection of bottlenecks and congestion and optimizes routing.
- Prediction of equipment failure, based on historical data
- Equipment/plant fault diagnosis (expert system + historical data pattern recognition)
- Maintenance & provision patch deployment planning (optimising field staff travel to

customer & operation sites against, stores' location, travel times, and time to repair/provide)

#### 2. Network planning:

Forecast demand in different areas for optimal resource allocation

Traffic routeing optimisation

Mobile cell planning, radio signal strength prediction.



#### **Telcos' AI Use-Cases**

#### 3. Customer service automation

AI –enhanced customer voice enquiry (chatbot),

Al-enhanced CRM (customer relation management)

4. Cyber security:

Fraud detection using pattern recognition, AI-driven authentication

Real-time surveillance using pattern recognition.



## The Future of AI in Telcos' Field Operations

Global Telco AI Alliance announced in July 2023 with the aim of developing aTelco-specifiv AI platform. Alliance Co-Founders are Deutsche Telekom, e& (Etisalat), Singtel, and SK Telecom.

Looking ahead:

- the increasing digitalisation and automation in customer's applications and businesses, and
- the virtualisation of the new generations of telecommunications networks (software-defined networks and NFV),

make telecoms networks amenable to the use of AI technology.



#### **AI Automating Telco Products, Applications & Services**

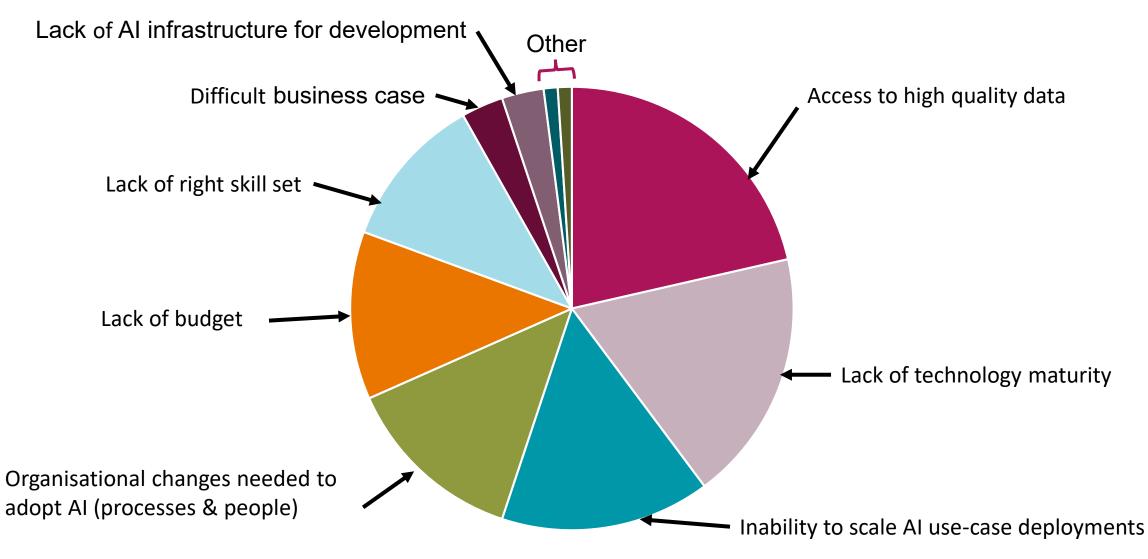
#### Augmentation

Al systems provide insight & analytics to enhance human activity. (e.g., cyber security tools.)

#### Automation

Al systems automate routine human tasks. (e.g., automated passport control barriers, robotic vacuum cleaners, chatbots handing users' enquiries.)

#### **Autonomics**


Al systems that self-manage – reviewing its performance & self-calibrating. Can be embedded in Telco's network and support systems. Reducing human involvement



# 3. Challenges facing Telcos in deploying AI



## **Challenges for Telcos in deploying Al**



Source: Analysis Mason 2023 report



### **Other Challenges for the Telcos**

1. Culture of caution in introducing radical changes to managing operations. Continuing need to maintain ultimate human control:

- Limiting the extent of autonomous network management systems (will "hands-free network" happen?)

2. Non-homogeneity of the Telco's network, often several generations of 'legacy networks' co-exist.

3. Difficulty in achieving the target cost savings and business advantages.

4. Telco's sensitivity to the ethics of using AI technology and public and customer perceptions



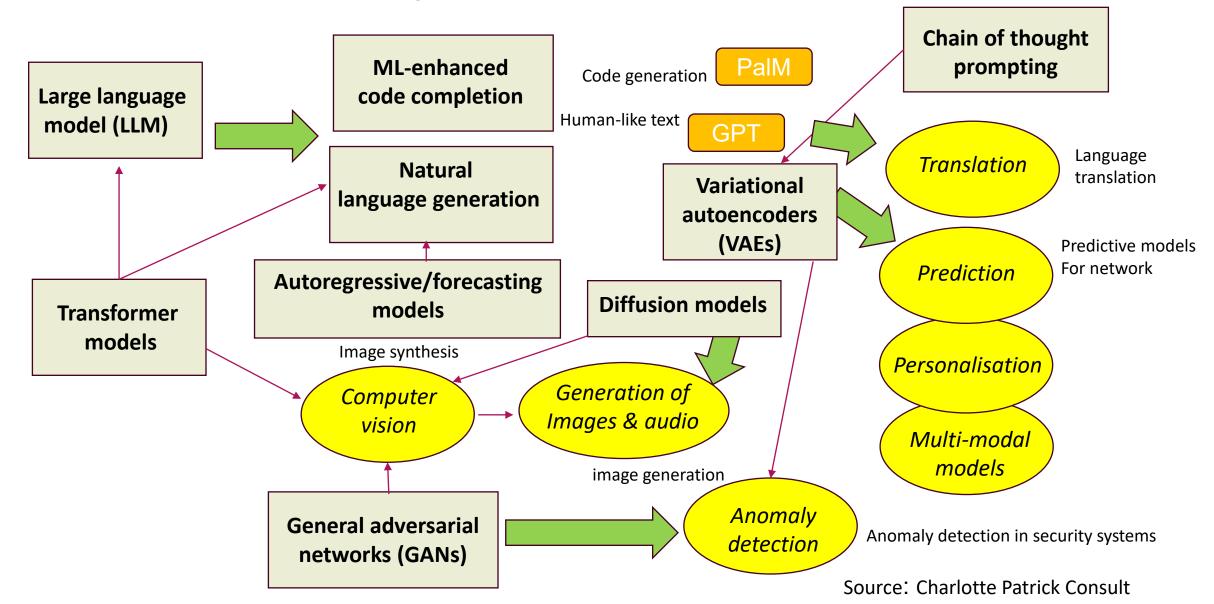


# 4. Conclusions



## Conclusions

- i. Clearly, the use of AI technology can help the Telcos to improve their customer service, network performance, and operational effectiveness.
- ii. But, there are still problems in widespread deployment of AI
- iii. Also, still difficult to derive the cost and other business benefits
- iv. However, as the AI technology matures and the understanding of how best implement it safely on a large-scale increases the adoption of AI by Telcos to manage their customer service and operations will greatly increase.






# thank you



#### **Components of Generative Al**

