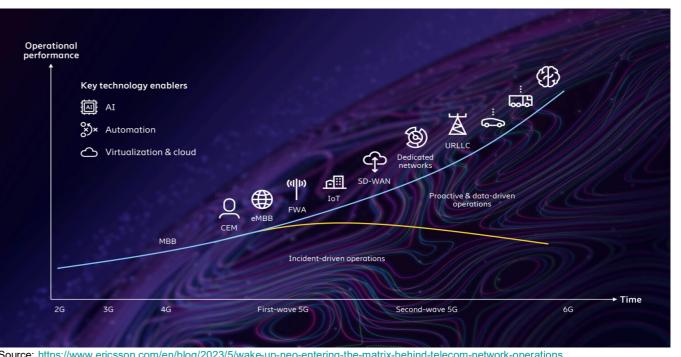


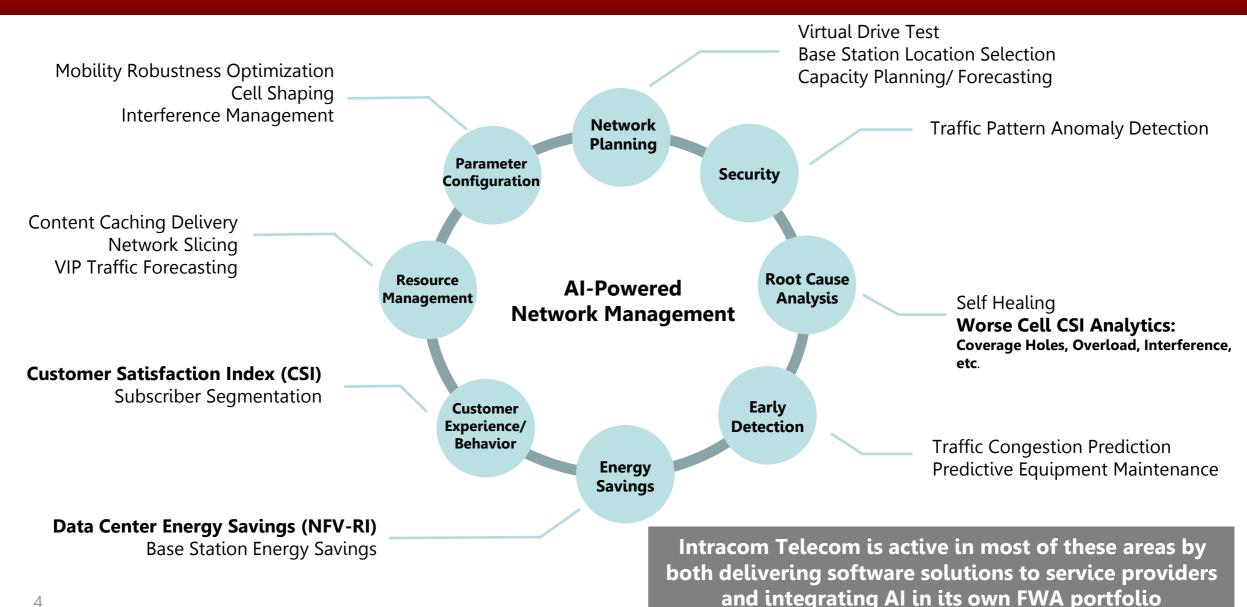
Technology Shaping the Future


Al-Powered Network Management: From Energy Savings to Proactive Customer Care

Introduction (1/3)

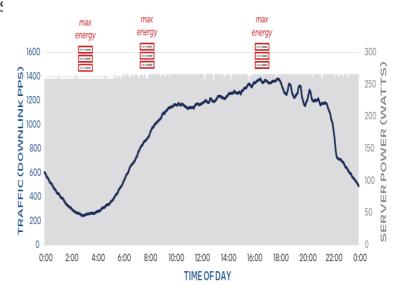
Al as an enabler for proactive network management

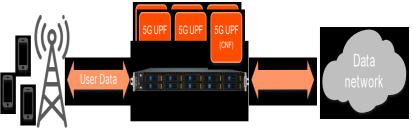
- **Traditional network management** is based on a **reactive approach** that relies on rule-based, incident-driven solutions. Nonetheless, the continuously increasing network complexity (5G/FWA, diverse services, increased traffic volumes, virtualization, etc.) calls for advanced data analytics to ensure efficient network management and increased operational performance.
- **Artificial Intelligence (AI)** shifts network management operations to a **proactive data-driven paradigm**:
 - Continuously analyze data and predict future performance so as to detect network issues and act accordingly (element failures/ suboptimal parameter configuration, etc.)
 - Provide a fast resolution of incidents:
 - Reduced operational costs
 - Reduced downtimes/ outages
 - Reduced lost revenue
 - Reduced negative brand impact
 - Enhanced system performance
- Al-based data-driven optimization offers:
 - Scalability
 - Continuous learning
 - Close-to-optimal performance


Source: https://www.ericsson.com/en/blog/2023/5/wake-up-neo-entering-the-matrix-behind-telecom-network-operations

Introduction (2/3) Al Challenges

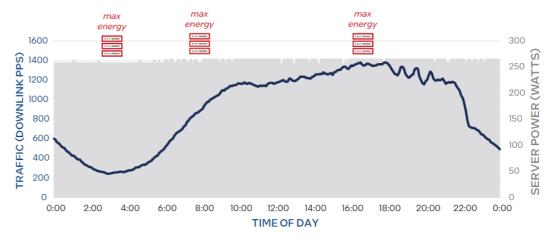
- ▶ AI benefits come with numerous challenges that need to be addressed for successful implementation:
 - Data Quality: Inaccurate or incomplete data can lead to incorrect predictions and suboptimal network performance
 - Data Availability: Data may not always available, especially when introducing a new AI-based feature.
 - **Digital Twins** provide a safe/ controlled environment for data generation/ model development and behavior testing before deploying the actual model to the live network.
 - **Data Correlation**: Information referring to the same user/ cell may be fragmented across different network sources and Performance Monitoring (PM) events.
 - Heavy correlation/ integration tasks are often required to create meaningful metrics per user/ cell.
 - **Multi-vendor**: Interoperability challenges can arise in multi-vendor environments where AI solutions need to work with different equipment and protocols.
 - **Scalability**: Ensuring scalability can be a challenge as the network traffic continues to grow.
 - **Privacy**: Handling sensitive network data while complying to privacy regulations can be complex. Data anonymization is crucial for privacy protection.
 - **Continuous Monitoring**: Al models require continuous monitoring, fine-tuning, retraining and validation to remain effective over time. A state-of-art MLOps platform is of paramount importance for a systemized way of working
 - **Explainability**: Understanding AI decisions is needed to strengthen service providers' trust in AI.

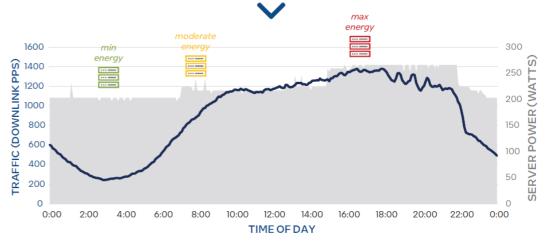

Introduction (3/3)


Al-powered network management domains

Intracom Telecom NFV-RI™ (1/4) Business Challenge

- ▶ Data plane cloud-native network functions (CNFs) use polling intensive frameworks (e.g. DPDK or VPP) for carrier-grade packet processing that ensures low latency, zero packet drop and high throughput.
- Examples of CNF:
 - User Plane Function (UPF) for 5G Core
 - Serving/Packet Data Network Gateway (S/PGW) for Evolved packet Core (EPC)
 - Centralized Unit User Plane (CU-UP) for a virtualized Radio Access Network (vRAN)
- ► The **high polling intensity forces the CPU cores of the CNFs** to be at the highest frequencies all time, even during off-peak/idle periods, resulting in maximum power consumption.
- Intracom Telecom NFV-RI™ provides AI-driven closed-loop mechanisms to dynamically manage the power consumption of CNFs in line with their load, while guaranteeing zero packet drops.





Intracom Telecom NFV-RI™ (2/4) Solution Description

- Intracom Telecom's NFV-RI™ dynamically selects the most efficient CPU frequency for polling-intensive CNFs based on their current and anticipated demand, while guaranteeing zero packet drops.
- Data plane servers operate at significantly less power during periods with moderate or light traffic, contributing to **energy** savings that can be as high as 30-45%.
- ► The solution **does not require any modification on the CNFs**, as it leverages targeted platform telemetry and AI techniques to:
 - Deduce how loaded these will be in the next time window
 - Identify which is the least CPU frequency they will need to keep processing packets without drops
- ▶ Decisions are made independently for every Pod of the CNF on the server.

Improved energy efficiency through traffic-aware power throttling

Intracom Telecom NFV-RI™ (3/4) Indicative dashboard from an operator case study

platform power - socket: 0 zone: dram - socket: 0 zone: package - socket: 1 zone: dram - socket: 1 zone: package

Intracom Telecom NFV-RI™ (4/4) **Product Highlight**

1st PoC with Cosmote (award-winning TMF Catalyst)

2020

Showcased 14% average energy savings (24h) in a **SPGW-U** prototype

2022

Joint demo with Intel and leading industry vendors

Showcased 29-31% average energy savings (24h) for commercial 5G **UPF** deployment

Major PoC with KDDI

Up to 37% average

energy savings (24h) in

2022

ANGACOM

2022

Showcased 30% average energy savings (24h) in vCMTS server

Joint demo with

Intel

Partnership with **Red Hat**

5G UPFs

Dynamic Data-Center Sizing first demo

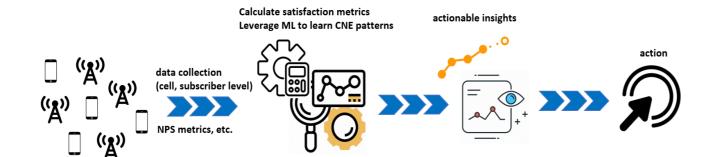
2023

Reference Architecture for energy-efficient 5G data plane over OpenShift

2022

Fully integrated & certified for Red Hat Openshift + listed on Red Hat's Ecosystem Catalog

Joint demo with **Red Hat**

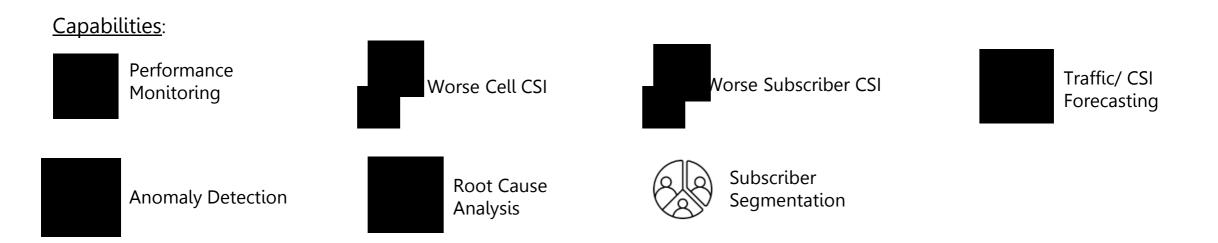

2023

Intracom Telecom Cognitiva Mobile CSI Suite (1/3) Overview

The Cognitiva Mobile CSI suite is a Customer Network Experience (CNE) platform that defines a Customer Satisfaction Index (CSI) used for proactive care.

CSI < 50	→ Extremely Dissatisfied
50 ≤ CSI < 75	→ Dissatisfied
75 ≤ CSI < 85	→ Neutral

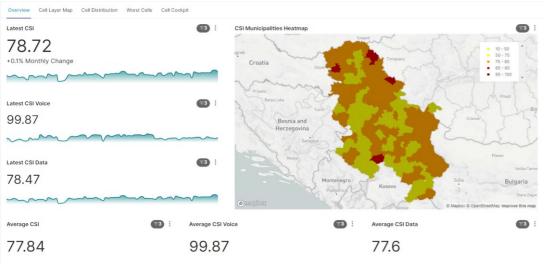
- → Neutral $85 \le CSI < 95$
 - → Satisfied
 - > Extremely Satisfied


Unified framework for proactive CNE management & provisioning

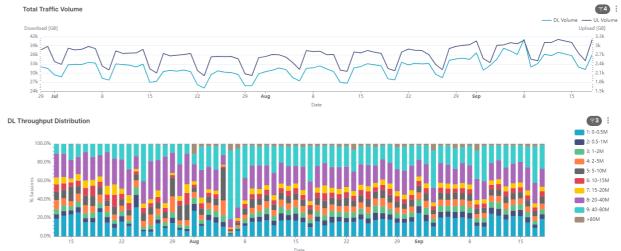
95 ≤ **CSI**

- CSI reflects the degree of user satisfaction at subscriber and cell level across different services (voice, data) and technologies (2G/3G/4G) by correlating relevant key performance indicators (throughput, latency, retainability, accessibility, etc.)
- Unified framework that leverages CSI values, AI and Net Promoter Score (NPS) to deliver accurate Customer Network Experience (CNE) predictions, derive actionable insights and proactive actions

Intracom Telecom Cognitiva Mobile CSI Suite (2/3) Capabilities & Benefits


Benefits:

- Loyalty-centric network planning
- Faster troubleshooting reducing response times to service degradation before becoming customer complaints
- Marketing campaign management for retention/ upsell opportunities



Intracom Telecom Cognitiva Mobile CSI Suite (3/3) A Serbian operator case study

CSI Analytics

Traffic Analytics

Worse Cell CSI Reporting

CSI +	CSI data :	CSI voice :	Total Calls	Voice Retainability :	Voice Accessibility :	DL Volume GB \Leftrightarrow	UL Volume GB	RTT ms :	DL Throughput Mbps +	UL Throughput Mbps
45.01	44.22	99.87	47.5k	0.9994	0.9971	4.39k	421.55	62.71	3.02	1.51
45	44.46	99.79	41.7k	0.9987	0.9962	5.43k	542.79	57.05	3.14	1.31
44.98	44.46	99.77	40.8k	0.9985	0.9958	4.68k	465.57	59.44	3.5	1.03
44.96	44.37	99.87	83.2k	0.9995	0.9967	8.41k	869.66	60.98	3.45	1.06
44.87	44.14	99.92	70.9k	0.9996	0.9981	5.24k	587.1	64.07	2.46	1.88
44.86	44.31	98.95	397	0.9862	0.9972	32.06	3.89	74.32	8.97	0.7539
44.83	44.04	99.63	26.7k	0.9968	0.995	2.47k	278.94	51.57	5.21	1.17
44.79	43.65	99.69	53.8k	0.9994	0.991	3.16k	321.58	61	3.13	1.27
44.57	44.06	99.77	47.9k	0.9978	0.9974	4.83k	509.17	54.91	4.11	1.01
44.56	43.83	99.83	97.5k	0.9992	0.9961	5.91k	1.31k	59.48	3.06	2.31
44.56	43.19	99.8	51.7k	0.9994	0.9949	2.82k	259.48	55.81	3.28	1.36
44.55	43.95	99.6	71.1k	0.9955	0.9971	6.17k	559.47	60.76	3.94	0.9349
44.55	43.97	98.92	46.9k	0.988	0.9921	4.16k	452.2	61.89	4.46	1.02
44.55	44.22	99.58	44.4k	0.995	0.9979	9.8k	681.73	65.93	4.39	0.7697
44.5	43.98	99.65	34.7k	0.9972	0.9948	3.72k	309.12	60.87	4.36	0.827
44.46	44.02	99.69	43k	0.9979	0.9945	5.51k	403.36	60.17	4.38	0.6518
44.42	43.56	99.81	61.6k	0.9993	0.9952	3.93k	384.35	54.05	3.65	1.15
44.41	43.64	99.85	69.3k	0.9986	0.9981	4.87k	643.98	69.14	2.8	2.13
44.41	43.97	99.85	79k	0.9985	0.9987	7.88k	863.66	60.23	3.45	1.09
44.38	43.12	99.79	52.4k	0.9996	0.9938	2.98k	292.33	54.17	3.63	1.31
44.34	43.66	99.77	46.6k	0.999	0.9946	5.16k	418	65.68	4.03	0.8089
44.32	43.53	99.63	6.06k	0.9987	0.9908	595.28	55.61	47.39	3.68	1.45
44.28	43.03	99.77	12.5k	0.9989	0.9949	509.89	71.34	63.84	1.96	2.73

Customer Segmentation

msi *	CSI Voice :	Min CSI Voice :	Max CSI Voice :	Retainability :	Accessibility :	Call Attempts :	Call Attempts GSM :	Call Attempts UMTS :	Call Attempts LTE
00B00FD1C75454	76.77	76.77	76.77	1	0.2	5	5	0	0 🛦
00BD539F45E3E2	76.77	76.77	76.77	1	0.2	5	5	0	0
019A8C0975D06C	76.77	76.77	76.77	1	0.2	10	10	0	0
02161F6E5DFD6A	65.66	65,66	65.66	0.5	1	4	4	0	0
022556A63F57A2	75.76	75.76	75.76	1	0.1667	12	12	0	0
02C2B642D318F5	73.46	73.46	73.46	1	0.0909	11	11	0	0
03F19689782CBF	72.73	72.73	72.73	0.6	1	5	5	0	0
0BE28039BE55A5	53.87	53.87	53.87	0.3333	1	3	3	0	0
044D4ADE172B7	70.73	70.73	70.73	1	760µ	1.32k	1.32k	0	0
D8D83782D58A4	74.5	74.5	74.5	1	0.125	8	8	0	0
E2F36D74E9137	75.49	75.49	75.49	1	0.1579	38	38	0	0
E7B65F4C9512A	76.77								0
FCD3DAD00BD24	73.9								0
0592BD2C21C68	76.77					vi		\sim	0
08B985FED6EAF	75.04		_			71		—	0
							I APPLI		. 0

Wrap Up

- ▶ Given the continuously increasing network complexity, AI is the key technology enabler for efficient network management ensuring better scalability and proactive decision making.
- Nonetheless, a successful AI implementation requires cautious planning considering numerous factors such as data availability/ quality, multi-vendor, privacy concerns, continuous monitoring, etc.
- Intracom Telecom is very active in the domain of AI-powered network management by delivering AI software solutions to service providers as well as integrating AI into its own FWA portfolio.
- Example highlight use cases:
 - NFV Resource Intelligence: NFV-RI™ can achieve data center energy savings up to 30-45% by dynamically selecting the most efficient CPU frequency according to current and predicted traffic demands

<u>Cognitiva Mobile CSI Suite</u>: A unified framework for cellular network management enabling proactive customer care, loyalty-driven network planning, faster troubleshooting and customer segmentation.

For more information, visit www.intracom-telecom.com

