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Preamble
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Preamble (cont.)
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Performance-oriented 
network management

• Periodical performance 
evaluation (based on 
traffic measurements) and

• Adaptive resource 
assignment

 most suitable strategy 
for network planning 
under demand 
uncertainty

Nature of traffic

• No single/constant rate
 very different bandwidth per 

call requirements 

 several alternative contingency 
bandwidth requirements (e.g., 
multimedia traffic)

• In-service calls may
 have adaptive features of 

bandwidth and holding time 

 experience bandwidth 
compression-expansion 

• Random - Bursty traffic
 Poisson arrivals

 Quasi-random arrivals

 ON-OFF traffic

 Batched Poisson arrivals

Preamble (cont.)
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Performance-oriented network management

The Problem
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Performance-oriented network management

Global network optimization – Algorithm
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Proper
Teletraffic
Model
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• Importance of QoS assessment through teletraffic models:

– Bandwidth allocation among service-classes QoS per service guarantee.

– Avoidance of too costly over-dimensioning of the network.

– Prevention of excessive network throughput degradation, through traffic 

engineering mechanisms.

• A sine qua non of teletraffic loss models:

The efficient calculation of Call Blocking Probability          Recursive formula.

• Applicability:

– Connection Oriented Communication Networks, in general.

– IP based networks with resource reservation capabilities (IntServ - DiffServ).

– Cellular networks (e.g., UMTS).

– All-optical core networks (MPλS/GMPLS).

– 5G networks.
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Teletraffic Models – Why? 
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Applicability to SDN-based 5G networks

SDN/NFV based 5G architecture

Software Defined Network (SDN):

completely programmable network 

by decoupling the control and data planes.

Network Function Virtualization (NFV):

allows executing the SDN functions on general-

purpose hardware, reducing the network cost.

MCC – Mobile Cloud Computing

M-CDN – Mobile Content Delivery Network

P-GW – Packet Data Network Gateway

CSC – Core SDN Controller

S-GW – Serving Gateway

SBS – Small cell Base Station

MBS – Macro cell Base Station

WiFi AP – Access Point with WiFi protocol 

LO-GW – Local Offload Gateway

LSC – Local SDN Controller

MU – Mobile User
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Applicability to SDN-based 5G networks

Layering concept in SDN

Τhe SDN controller provides a global view of

the available underlying resources to network

applications (Application Layer) by the

Northbound Open API.

Τhe SDN controller configures the Forwarding

Elements (located at the Infrastructure Layer)

by sending control messages to the SDN Agents

(located within the FEs) through the

Southbound Open API.
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Applicability to SDN-based 5G networks

SDN/NFV based RAN



A call requires a radio resource unit from RRH and a computational resource unit from V-BBU.

CAC checks the availability of resources to accept the call.
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Applicability to SDN-based 5G networks

Cloud-RAN architecture

BS – Base Station

RRH – Remote Radio Head

(radio frequency components–antennas)

EPC – Evolved Packet Core

CPRI – Common Public Radio Interface

VMM – Virtual Machine Monitor

RRA – Radio Resource Allocation

CAC – Connection Admission Control

V-BBU – Virtual BaseBand Units

(signal processing servers)

C-BBU – Centralized BaseBand Units

(central pool of data center resources)
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Classification of teletraffic models

Key considerations:

• The call arrival process.

• The service-classes
 Bandwidth requirement upon call arrival.

 The behavior of in-service calls regarding the amount of 

occupied b.u. per call over time.

• Bandwidth sharing policy
 Complete sharing policy

 Bandwidth/Trunk reservation policy

 Threshold Policy
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 Random arrivals – traffic (infinite number of traffic sources).

 Quasi-random arrivals – traffic (finite number of traffic sources).

 Batched Poisson arrivals (infinite number of traffic sources). 

Calls from different service-classes arriving in batches, 

while batches arriving randomly.time
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Call Arrival Process
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fixed bandwidth

elastic bandwidth: calls have several, alternative, 

contingency bandwidth requirements
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Bandwidth requirement upon call arrival 
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ON OFF

ON constant-bit-rate 

(stream traffic)

bandwidth compression/expansion

(elastic traffic)

ON-OFF traffic

time

time

time
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Call’s behavior while in service 



• Teletraffic models of random input

 Random arriving calls with fixed or elastic bandwidth 
requirements, and fixed bandwidth allocation during 
service.

 Random arriving calls with fixed or elastic bandwidth 
requirements, and elastic bandwidth during service.

 Random arriving calls with fixed or elastic bandwidth 
requirements, and ON–OFF traffic behavior during 
service.
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Efficient teletraffic loss models
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The Erlang Multi-rate Loss Model
(EMLM)
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EMLM Analysis – Classical Method  

State Space Ω

Complete Sharing Policy – A coordinate convex policy

Global Balance (rate_in=rate_out) - Statistical equilibrium
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EMLM Analysis – Classical Method (cont.)
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EMLM Analysis – Classical Method (cont.1)

Global Balance (Rate_in = rate_out)
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EMLM Analysis – Classical Method (cont.2)

Example of formulas 
for Call Blocking 

Probability Calculation

K=2, b1 = 1, b2 = m

Call Blocking Probability Determination – Classical Method 
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EMLM Analysis – New Method

“Kaufman / Roberts Recursion”
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EMLM Analysis – New Method (cont.)

k

k

C C
1

b
j C b 1 j 0

P G q(j) where G q( j)-

 - + 
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equal mean service times!

Call Blocking Probability – Recursive Calculation

0 1 2 3 … C-4 C-3 C-2 C-1 C

q(j)/G – Macro-state Probabilities

Blocking States, e.g. bk=4

array q()

1

( )
C

j = 

U = j q jLink Utilization:

May 17, 2019 FITCE 2019 (University of Patras)

Blocking State, e.g. bk=1
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The Connection Dependent Threshold Model
(CDTM)
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Call Blocking Probability:              where G = 
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The Extended Connection Dependent 
Threshold Model (E-CDTM)

example

Compression rate=C/j= 5/6
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E-CDTM – The analytical model
for elastic and adaptive service-classes

Link occupancy distribution
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E-CDTM versus E-EMLM

C=T = 80 T = C + 10

1st service-class

2nd service-class

2nd service-class

1st service-class
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• Teletraffic models of quasi-random input

 Quasi-random arriving calls with fixed or elastic bandwidth 

requirements and fixed bandwidth allocation during service.

 Quasi-random arriving calls with fixed bandwidth requirements and 

elastic bandwidth during service.

 Quasi-random arriving calls with fixed bandwidth requirements and 

ON–OFF traffic behavior during service.

May 17, 2019 FITCE 2019 (University of Patras) 29/48

Efficient teletraffic loss models (cont.1)
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The Extended Engset Multi-rate Loss Model
(E-EnMLM)
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E-EnMLM – The analytical model
for elastic and adaptive service-classes
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The Extended Connection Dependent 
Threshold Model for finite population 

(Ef-CDTM)

example

Compression rate=C/j= 5/6
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Ef-CDTM – The analytical model
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Ef-CDTM comparison with other models:
EMLM, CDTM, E-CDTM 

Service-class 2: adaptive

Service-class 1: elastic

example

Offered Traffic-Load per idle source = 0.025 erl

Consequently, it increases by 0.025 erl
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Ef-CDTM comparison with other models:
EMLM, CDTM, E-CDTM (cont.)

1st serv.

2nd serv.

1st serv.

2nd serv.

T=C T=C+20

Ef-CDTM            f-CDTM
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• Teletraffic models of batched Poisson input

 Batched Poisson arriving calls with fixed bandwidth requirements and 

fixed bandwidth allocation during service.

 Batched Poisson arriving calls with fixed bandwidth requirements and 

elastic bandwidth during service.

 Batched Poisson arriving calls with fixed bandwidth requirements that, 

when in service, alternate between transmission periods (ON) and idle 

periods (OFF).
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Efficient teletraffic loss models (cont.2)

time

ON OFF ON-OFF traffic, while in service
time

Fixed bandwidth requirements upon arrival

Batched Poisson arriving calls
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The Batched Poisson ON-OFF Model
(BP-ON-OFF)
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The incorporated ON-OFF model
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NO
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The BP ON-OFF Model – CAC

Each call is serviced according to the following scheme:

Blocked and Lost

Call Congestion:   The proportion of service-class k 

calls that are blocked due to lack of bandwidth.

Time Congestion: The proportion of time that even a 

single call of service-class k cannot be accepted in the 

system.
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completed
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The analytical BP-ON-OFF Model

k

n
L ,1

the level that separates the state-vector n


from the state
1

1+k
n


i = 1  state ON

i = 2  state OFF

ni = (ni
1,…, ni

k,…, ni
K)

ni
k+l = (ni

1,…, ni
k + l,…, ni

K) 

ni
k-l = (ni

1,…, ni
k - l,…, ni

K) 

)( 2
,

11 nnn lklk +
+


)( 2

,
11 nnn lklk -

-



),( 212
lklk

nnn +
+


)( 2

,
12

lklk
nnn -

-



k

n
L ,2

the level that separates the state-vector n


from the state
2

1+k
n


 

σ 

σ σ 

σ 

1-σ 

1-σ 

1-σ 

σ 

σ 

σ σ 

σ 

σ 

C* 
0,0 

1,0 

2,0 

3,0 

0,2 1,1 

1,2 2,1 

0,1 

0,3 

C 

1-σ 1-σ 

1-σ 

1,1
)0,1(L  

1,2
)0,1(L  

Local Balance does not exist but “Local Flow Balance” does exist

May 17, 2019 FITCE 2019 (University of Patras)



41/48

The analytical BP-ON-OFF Model (cont.1)
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The analytical BP-ON-OFF Model (cont.2)
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The analytical BP-ON-OFF Model (cont.3)
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BP-ON-OFF Model: Numerical example

K = 2 service-classes  

b1= 1, b2= 12 b.u. per call

C = C*=60 b.u.

The batch size, sk, is given by the geometric distribution, 

i.e. Pr(sk=r)=(1- βk)βr-1
k . In this example β1=0.2, β2=0.5. 

Arrival rate: λ1=10, λ2=2

Call holding time, exponentially distributed: 

1st service-class: μ-1
11=0.0405 (state ON), μ-1

21= 0.01 (state OFF).

2nd service-class: μ-1
12=0.0405 (state ON), μ-1

22= 0.01 (state OFF).
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BP-ON-OFF Model: Numerical example

Time Congestion  (%) Simulation results  (%)

λ2 1st class 2nd class 1st class 2nd class

2 2.52 25.56 2.51  0.06 25.55  0.23

1.8 2.20 22.99 2.19  0.07 23.02  0.16

1.6 1.88 20.32 1.86  0.07 20.29  0.12

1.4 1.57 17.54 1.57  0.06 17.55  0.14

1.2 1.26 14.69 1.24  0.03 14.65  0.10

1.0 0.97 11.79 0.99  0.01 11.77  0.15

0.8 0.70 8.92 0.70  0.01 8.92  0.18
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Efficient 
teletraffic models  
of random input

only!
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